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I w jumps a t  a w a l l  we obtained by a physical derivation. 

the  concepts of‘ effect ive mean f’ree path  f o r  momentum and energy transfer;  

the  effect ive mean free paths &e obtained from known viscosi t ies  and 

thermal conductivities, 

a t  somewhat lower pressures than is the  f i rs t -order  analysis and applies 

t o  nonmonatomic as well  as t o  monatomic gases,, Several illustrative ex- 

amples, including fully developed flow and heat t ransfer  i n  a tube are  

The analysis uses 

The second-order s l i p  flow analysis Is applicable 

considered, 

on t h e  order of 20 percent were’noted in the region f o r  which the analysis 

Differences between t h e  first- and second-order corrections 

appears applicable, 

NOMENCLATUT(E 

A area (f ig .  1) 

a accommodation coefficient (eq, (40)) 

specif ic  heat a t  constant pressure 

specif ic  heat a t  constant volume 

P 

cv 

C 

E energy crossing dA per unit area per uni t  time from a given 

direction 

t o t a l  ener crossing dA per u n i t - a r e a  per uni t  t i m e  from above Y E’ 
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t o t a l  energy crossing dA per u n i t  area per unit t i m e  frombelow 

fract ion of molecules reflected diffusely (eq. (19))  

Maxwellian dis t r ibut ion function f o r  molecular speeds (eq. ( 6 )  ) 

in te rna l  energy per u n i t  mass other than t rans la t iona l  energy 

thermal conductivity 

molecular f r e e  path 

effect ive f r ee  path for  internal  energy t ransfer  

effect ive f r ee  path f o r  momentum t ransfer  

effect ive free path f o r  t ranslat ional  energy t ransfer  

hard-sphere f r e e  path 

x-component of  momentum crossing dA. per uni t  t i m e  per 

from a given direction 

t o t a l  x-momentum crossing dA per uni t  area per uni t  t 

above 

uni t  area 

me from 

t o t a l  x-momentum crossing dA per uni t  area per uni t  t i m e  from 

below 

molecular mass 

Nusselt number, 2qgo/(Tw - Tb)k 

continuum Nusselt nurriber 

nuniber density 

Prandtl nude r ,  c p / k  

pressure 

actual pressure drop 

pressure drop for  continuum flow a t  veloci ty  a t  which actual  pres- 

sure drop i s  Ap 
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uX 
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vX 
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cr 
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cp 
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heat transfer per unit area per unit time 

gas constant 

tube radius 

temperature 

x-component of mean velocity 

x-component of molecular velocity 

mogecular speed 

portion of x-velocity cornpabent that is random (eq. ( 3 ) )  

coordinates (fig. 1) 

thermal diffusivity, 

cp/cv 

spherical coordinate (fig, 1) 

Boltzman's constant 

viscosity 

density 

shear stress 

spherical coordinate (fig. 1) 

defined by equation (14) 

angular velocity of dA 

Subscripts : 

b bulk 

i 

m monatomic 

r reflected 

t referring to translational energy 

referrlng to internal enerm cIAAer than translational 
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v i n  veloci ty  range du a t  velocity v 

W w a l l  

0 

172 

Superscript: 

referr tng t o  point 

re fer r ing  t o  planes 1 and 2 

xo, yo, zo (fig, 1) or t o  gas at  w a ~  

mean value - 
I N T R O D U C T I O ~  

S l ip  and temperature-jmy boundmy conditions have been used with 

considerable success i n  the analysis of s l i g h t l y  raref ied gases [ll. 

t h i s  method of analysis, the  continuum equations of momentum and energy 

w e  used throughout t he  gas, and the e f fec ts  of the walls are tiiken in to  

account by using appropriate boundary conditions, 

veloci ty  and temperature gradients, the  veloci ty  and temperature of the  

gas next t o  the w a U  w i l l  d i f f e r  from those of the wall. The gas, next t o  

the  w a l l  is  made up of molecules coming from the  w a l l  and from a distance 

a mean free path a w a y  from the  wall, so  that i ts’ueloci ty  and temperature 

w i l l  be between those of t he  w a l l  and of the  gas a mean f r ee  path away- 

If the  mean f’ree path is small, the veloci ty  and temperature jumps w i l l  

be  negligible, 

I n  

For a raref ied gas with 

In  the  usual analysis, the velocity and temperature jumps a t  the  w a l l  

are assumed t o  be proportional t o  the normal veloci ty  and temperature 

gradients, 

f i l e s  are essentially uniform over a mean free path, as they w i l l  be if 

the gas i s  but  s l i gh t ly  rarefied. 

where the prof i les  maybe nonlinear m e r  a mean f r e e  path, the jumps a t  

That i s  a good assumption i f  the velocity and temperature pro- 

A t  somewhat lower pressures, however, 
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the wall would be expected to be functions of the higher ordel' normal 

and tangential derivatives, 

Second-order jump boundary conditions have been obtained in reference [ 21 

by using Burnett's approximate solution of the Boltzman equation, 

equations, however, have been found to give regults that m e  not in agree- 

ment with experiment [l]; in fact, in many cases the Navier-StoJres equa- 

tions were found to be superior. 

jump boundary conditions by using a comparatively simple phystcal derivation1 

appears to be worthwhile, The Boltzman equation will not be used herein, but 

the momentum and energy carried across an area element by molecules that, 

in effect, had their last collision a distance equal to an effective mean 

free path from the element will be considered, The effective mean free 

path, which has different values for momentum and heat transfer and which 

also differs from the usual hard-sphere mean free path, is then related 

to experimental viscosities and thermal conductivities. The results differ 

somewhat from those of reference [Z]. 

Burnett's 

Thus, attempting to obtain second-order 

The expressions for the velocity jump at a wall will be derived in 

the next section, after which the corresponding temperature jump will be 

considered. 

cable to both monatomic and nonmonatomic gases. 

vqlocity and temperature fields, such as thermal creep, are neglected, 

MOIvBNTUM TRANSFER 

The results, which use Eucken's approximation [ 41, are appli- 

Interactions between the 

Consider the x-component of momentum carried by molecules across an 

'A related analysis for thermal radiation in gases was recently carried 
out by the autkpr [ 31. 
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area element dA located at xo, yo, zo- The plane of dA is normal 

to the z-axis (fig. 1). 

tion making an angle 8 with the z-axis and a polar angle cp, the 

nuniber of particles in the velocity range between v and v + dv that 

pass though dA per second wouldbe nOfO dv ~t cos 0 dA, The quantity 

no is the nuuiber density of particles at xo, yo, zO, and fo is the 

corresponding velocity distribution function, For an isotropic gas, 

the fraction of particles with velocities that make an angle between 

and 8 + de with the z-axis and a polar angle between cp and cp + dcp 

is sin 8 de dcp/45c, 

range dv that pass through dA per unit time at an angle with the 

z-axis between 0 and 0 + de ana a polar angle between cp and cp + dcp 

is 

If all the particles were traveling in a direc- 

I 8 

Thus, the actual number of particles in the velocity 

dz ,  = norO dv v cos 0 sin e de dcp/45c 

In the analysis, assume first, that the mean velocity of the stream 

is uniform and in the x-direction. 

be considered subsequently.) Then the x-momentum carried across dA 

by molecules that are in the velocity range and move at an angle to 

the z-axis between 0 and 0 + de and at a polar angle between cp and 

cp + dcp is 

(The effect of velocity gradients w i l l  , 

dv 

mx, v = mux,p~o dv v cos e sin e de dcp/4n. 

is the x-component of the x,o where m is the molecular mass and. u 

velocity in the range dv, 

Let 

U x,o = ux,o + %,o ( 3 )  

I 
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i s  x,o where Ux,o is the mean x-component of velocity at  0, and v 

the  portion of the x-component of velocity t h a t  is random, 

portion w i l l  have a Maxwellian velocity distribution, 

equation ( 3 ) ,  equation ( 2 )  can be integrated over a l l  ve loc i t ies  t o  give 

The random 

By use of 

% = U ( s i n  e cos e de dcp/45r) m % , p O f O  dv Lm 
 sin e COS e de dcp/45r) mno 

where vx is writ ten i n  spherical coordinates as 

vx = v sin 8 cos cp 

and 

Equation ( 6 )  gives, of course, the  Maxwellian dis t r ibut ion function f o r  

molecular speeds. 

Equation (4) becomes 

) ( 7 )  % = [U(s in  e cos e de dcp/4~)no~o)(mUx,o + 3 eo s i n  e cos cp 

The last  t e r m  i n  t h i s  equation is  obtained by use of t he  re la t ion  

- 
v2 = f mi$ 

8 

which can be obtained by using equation (6 ) .  

x-momentum transferred per u n i t  time across dA by molecules whose 

ve loc i t ies  make an angle between 8 and 8 + de with the z-axis and a 

p o l a r  angle between cp and cp + dcp, i f  the gas is moving a t  uniformveloci ty  

Equation ( 7 )  gives the 
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IT equation (1) is integrated over all values of 

quantity in brackets in equation (7) is obtained, 

in brackets gives the n M e r  of molecules that cross dA from the 

given angle range per unit time, and the second quantity in paranthesis 

can be interpretedcas the effective x-momentum carried per molecule. If 

the mass velocity 3-s not uniform, the molecules will carry momentum that 

differs from mu + 3/8 mfF0 sin 8 cos q~ Molecules that, in effect, 

had their last collision a distance 2e,m (effective mean free path for  

v, the 

Thus the quantity 

x,o 

momentum transfer) from d~ w i n  c a r r y  x-momentum equal to 

mUx,2 + 3/8 ma2 sin 8 cos rpcp. Thus, equation (7) becomes 

) (8) = [a(sin e cos e de dcp/4x)no~O mux, 2 + 8 3 I( sin 0 cos cp 

The mass velocity U at a point x,y,z (fig, 1) can be related to 

conditions at xo, yo, zo by expanding Ux in a three-dimensional 

Taylor series about xo, yo, zow This expansion gives 

x, 1 

If the binomial theorem is applied twice to the factor in braqkets, 

(9 )  

Equation (9) can be written in spherical coordinates 

origin at dA by setting 

8, cp with 

x - xo = 2e,m sin 8 cos cp, y - yo = 2, sin 8 sin cp, z - zo = 'e,m COS e 
7 
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It should be emphasized that 2e,m w i l l ,  i n  general, be greater than 

the distance t o  the  ac tua l  point of the  last  co l l i s ion  because of t h e  

persistence of ve loc i t ies ,  

cules tend t o  continue t ravel ing i n  .the direction they traveled befOre 

col l is ion,  Equation ( 9 )  becomes, in spherical  coordinates, 

That is, a f t e r  a co l l i s ion  many of the  mole- 

I n  equation ( 8 ) ,  the  t e r m  (3/8)my2 s i n  8 cos cp gives the contribu- 

t i o n  of the random molecular ve loc i t ies  t o  t h e  momentum transfer. If 

temperature gradients i n  the flow direction are assumed t o  be small ,  t h a t  

t e r m  w i l l  drop out when w e  integrate  over direct ion t o  get  the  t o t a l  

x-momentum passing through dA from above, If thermal gradients i n  

the flow direction are large,  t h a t  term may produce therm@ creep ef fec ts ,  

but those e f f ec t s  are neglected here. 

t e r m  i n  equation (8)  w i l l  be omitted i n  the remainder of t h e  

Thus, fo r  simplicity, the  las t  

analys i s 

Substitu$ing equation (10) i n  equation (8) and averaging over a l l  values 

of 2e,m give 
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where the overbar on I,,, h s ignif ies  an averaged value. TO calculate 

i n  terms of z,,~, the  distribution function Jr  fo r  molecular free 'e,m 

paths must be known. Jeans [ 5 ]  has shown that \cr i s  given approximately 

* - 

where c 

t h a t  7 varies with velocity, Thus, 

i s  a constant on the order of one, which accounts f o r  the f a c t  

- 
Zh = 1 lm Zh exp(- %)dZ = h!(cZ) - h  

c l  

This form is a l s o  assumed t o  apply t o  Ze,m. Thus, 

- - 
where the  constant c has been absorbed i n  the value of Ze,m. ( 2 e , m  

w i l l  l a te r  be  re la ted  t o  known viscosit ies,  ) 

i n  (11) and integrating t o  obtain the t o t a l  x-momentum passing through 

Substituting equation (12) 

dA from above results in  

a+ 
4rc 

where 
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( 14) 

and mno fs replaced by the mass density pOs The symbol r stands f o r  

the gamma f'unction. 

f r o m  below, we l e t  e go from ;/2 t o  II, instead of from 0 t o  ~r/2, 

and khange the sign of the  result: 

In order t o  obtain the  x-momentum passing through dA 

The shear s t r e s s  acting on 

unit area through dA f r o m  abwe: 

dA i s  the net x-momentum transferre'd per 

o r  

Next the  veloci ty  s l i p  a t  a tangentially moving w a l l  that i s  imed i -  

a t e l y  below, but not touching the area dA will be obtained. In  order t o  

do t h i s ,  instead o f  a wall., a uniform gas below 

Uw is  first considered, Equation (15) then yields  f o r  

dA moving a t  the veloci ty  

- 
(17)  

1 - POVO 
dM, = R(O,O,O)Uw = ;ii POTO dA uw 1 6 ~  

i s  extracted fromthe summation i n  equation (13) If the term for 

and equation (17)  i s  subtracted from that equation, there  resu l t s  

h = 0 
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Consider next a wall moving a t  the veloci ty  Ow, ra ther  than a uni- 

1c .form gas, t o  be below dA, Then the fract ion of t h e  momentum of the  mole- 

'cules re la t ive  t o  the  w a l l ,  which is, on the  average, given up t o  the wall, 

is 

- %cp F =  + dM, - aM; 
where is the  momentum carried by Peflected molecules. The momentum 

difference i n  the denominator of eqriation (19)  is  f o r  a w a l l  with perfect 

momentum accommodation and is taken t o  be  the  same as that which occurs 

when a uniform moving gas is  below dA, The quantity F is sometimes 

interpreted as the f rac t ion  of molecules ref lected diffusely, the rest 

being ref lected specularly, 

x-momentum transferred through dA fkom above, is dA t i m e s  the  shear 

s t ress .  

i s  assumed t o  apply throughout the gas3 the  e f fec t  of the w a l l  i s  ac- 

P 
The quantity dMz - d.bIx,r, which is the  net  

The shear s t r e s s  i s  given by equation (16), since tha t  equation 

counted f o r  by  t h e  jump boundary conditions- 

i n  equation (16), sdbst i tut ing that equation and equation (18) i n  (19), 

and solving f o r  Uo - Uw result i n  

Sett ing -r0 dA = 4 - % 
,r 
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If we re ta in  onlyterms through second order (terms containing second 

der ivat ives) ,  equation (20) becomes 

(21) 

Equation (16), correct t o  terms of second order, i s  

where the subscripts 

applicable throughout the gas. Terms containing second derivatives a re  

zero i n  equation (22).  The Navier-Stokes equations can be derived from 

0 have been dropped because the equation is assumed 
1 

equation (22)  and a re  thus applicable i n  the present analysis where second- 

order boundary conditions a re  used. It i s  significant t h a t  the NavieP- 

Stokes equations g i v q b e t t e r  resu l t s  f o r  raref ied gases or for large ve- 

l o c i t y  gradients than certain other approximations, f o r  instance, the 

Burnett equations [ 11. 

From equation ( Z Z ) ,  

and, since p = p/RT for a perfect gas, and 7 = (8RT/n) 1/2 (es. (W,  

Thus, equation ( 2 1 )  becomes 
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Equation (24) is written in terms of measurable quantities. 

term on the right side of equation (24) is the usual firsborder slip 

term [ 61 (p. 296), and the second term gives the second-order contribu- 

tions. 

the gas, a similar derivation gives. 

The first 

Equation (24) aplies for a wall below the gas. For a wall above 

Equations (22), (24), and (25) are the equations for second-order recti- 

linear slip flow according to the present method of analysis, 

somewhat from those of reference [2]. 

cient on a2Ux/dz2 in equation (24) differs from that in reference [2], 

and the second derivatives with respect to x and y are absent in the 

corresgonding expression in reference [2]. It appears, however, from the 

present physical derivation that those derivatives should have an effect, 

They differ 

For instance, the numerical coeffi- 

Equations (22), (241, and (25) were derived on the assumption that 

the flow is rectilinear. If the fluid does not move in straight lines, 

as for concentric rotating cylinders, the area element 

and the molecules crossing it will appear to have a different 

they would have if the fluid were moving in straight lines. 

can be taken into account by replacing aU,/az 

dA will rotate, 

U, than 

This effect 

in equations (22), (24), 

and (25) by auX/az + cu = au,/az + au,/ax, and azux/az2 by 

b2Ux/az2 + &/az = b2Ux/az2 + a2U,/ax az, where U) is the angular velocity 

of dA. Equation (22) then becomes 
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h 

which is  the generalized expression for  shear stress used fo r  deriving. 

the Navier-Stokes equations. Similarly, equation ( 24) beapmes 

ENERGY TRANSFER 

The analysis of energy transfer is somewhat analogous t o  tha t  of 

momentum transfer  i n  the preceding section, Here, the energy carried by 

molecules across an area element dA is  considered, (See f ig .  1.) The 

number of par t ic les  dZv in  the velocity range dv tha t  pass through 

dA per unit t i m e  and make an angle with the z-axis between 8 and 

8 + de and a polar angle between cp and cp + dcp is  again given by 

equation (l), Firs t ,  the  temperature of the gas i s  assumed t o  be uniform. 

Then, the energy carried across dA by molecules tha t  a r e  i n  the velocity 

range dv and move a t  an angle t o  the z-axis between 8 and 8 + d8 

and a t  a polar angle between cp and cp + dcp is 

1 mvZ + w0 nofo dv v cos e d~ s i n  e de dcp/(4x) (26) 
4 2  ) 

where m I o  

t ranslat ional) .  Integration of equation (26)  over a l l  molecular speeds 

with Io independent of molecular speed gives 

is  the internal energy o f  the  molecules (energy other than 
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dE = dA 

=dA 

Using equation ( 6 )  fo r  f o  

f sin 

gives the re la t ion  

so t h a t  

).o.o) [$ = (sin e cos e de dq 
45t 

A s  i n  momentum transfer,  t he  quantity i n  

number of molecules t h a t  cross dA from 

time, The quantity (4/3) (1-/2)m(v2)~ is  

energy, and mIo  i s  the  internal  energy 

- 
the first bracket gives the  

the  given angle range per un i t  

the  effect ive t rans la t iona l  

carried by  each molecule. The 

fac tor  4/3 appears i n  the elrpression far the  effect ive t ranslat ional  

energy because the  molecules with large t rans la t iona l  k ine t ic  energy 

cross dA i n  greater nmibers than do the  slower moving ones. Equa- 

t i o n  (29)  applies t o  a gas at a. uniform temperature, If the  temperature 

is not uniform, t h e  molecules crossing 

energy equal t o  ( 4/3) (1/2)m($) 2, where (1 /2 )m(  v2) 

k ine t ic  ene rw of molecules a distance 

e f fec t ive  2 f o r  t rans la t iona l  energy transfer,  Similarly, the  molecules 

w i l l  carry in te rna l  enerQy equal t o  

dA will carry effect ive kinet ic  - - 
is the  average 

is the  
e,t 

from dA and 2 
e , t  

2 

m I Z s  which i s  the  average internal  

energy of molecules a distance le,i from dA. The quantity 2e,i is 

the effect ive 

equal t o  le,%. Thus, equation (29)  becomes 

2 f o r  in te rna l  energy t ransfer  and is not necessarily 
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(31) 

and 

I =F~F,~ ,  2;  cosh-we sinwe sinw-Ecp cosscp 
2 ( h  - w)!(w - s)!s! (a h-wahl ayW-" ax s) 

h=O v=O s=O 

( 3 2 )  

Subs'tituting equations (31) and (32 )  in  equation (30) and averaging 

over a l l  values of Z e , t  and Z e , i  give 

Substi tuting fo r  Z e , t  and 2e,i h from equation (12)  (with le,, 

) and integrating t o  obtain t h e  t o t a l  energy 'e, i replaced by 2e,t or  

passing through dA from above give 
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h! 
z Z z ( h  - w)!(w - s ) ! s !  

+ move m =  
4Tt 

- - dA 2 2 2 R(h,w,s) 1631 h=O w=O s=O 

where R(h,w,s) is  again given by equation (14), 

thermal energy of a molecule is d [ ( l / 2 ) m z  + m I ]  = mev dT, where cv is 

the specific heat a t  constant volume and T is the  temperature, A f t e r  

The change i n  t o t a l  - 

- 
Eucken [4], cv is  writ ten as cv,t + c ~ , ~ ,  SO that d ( l l 2  V2) = Cv, t  dT 

and d I  = cv,i dT, If the variation of cv , i  with temperature fo r  

derivatives of higher order than the first i s  neglected, equation (34) 

then becomes 

( 3 5 )  

fo r  the energy crossing aA from above. Similarly, the  energy crossing 

dA from below is (eq. (15))  
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The net  energy or heat transferred i n  t h e  direct ion z i s  

a- - dEf 
dA 9, = 

o r  

I n  order t.0 obtain the e f f ec t  of a w a l l  on the  heat t ransfer ,  we as- 

sume first, t h a t  t he re  is a gas below dA at t h e  uniform temperatwe Tw. 

Equation (36) then yields, f o r  dE-, 

If the term f o r  

and equation (38) i s  subtracted from that equation, 

n = 0 is extracted from t h e  summation i n  equation (35) 

dE+ - dE' = povo dA(- cv,t + cv,d (To - Tw) 

(393 

If a wall at teirrperature Tw, ra ther  than a uniform gas, is placed 

below dA, t h e  accommodation coefficient a is  defined by 
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dE+ - dEr 

a =  ( 40) dE+ - dE- 
where dEr is the  energy reflected from the  wall, As i n  t he  case of F 

(eq, (19)  ), the  accommodation coefficient 

t o  be determined py free-molecule f l o w  experiments, inasmuch as its value 

depends on many variables and is  d i f f i cu l t  t o  predict ["I. 
the net energy transferred through dA i n  the z-direction,is -dA times 

the heat t ransfer  per un i t  area and i s  given by equation (37) .  

-q, dA = dE+ - dEr 

t i o n  (39) i n  equation (40), and solving fo r  

a i s  regarded as, a quantity 

But dE+ - dE,, 

Sett ing 

i n  equation (37), subst i tut ing tha t  equation and equa- 

To - Tw give 

W 

4 
'v,t + 'v,i 

If only terms through second order are  retained, 

The heat transfer,  correct through terms of second order, i s  given 

by equation ( 3 7 )  as 

or 
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c 

The subscripts o have again been dropped because equation (43) is as- 

sumed t o  apply throughout the gas, 

comes 

For a monatomic gas, equation (44) be- 

4 -  
km = 5 pv  le, tcv,t  

v,t by 

= -  5 

But km is related t o  p and c 

2 PCv,t 

[6](p. 178). From equations (45) and (46), 

o r  

Following Eucken [4], it is assumed that internal energy i s  transferred 

i n  the  same way as momentum, s o  that,  by equation (23) ,  

Eucken a l so  assumed that cv = (3/2)R, t h a t  is, t ha t  the  transfer of 

t rans la t iona l  energy i s  unaffected by the  presence of in te rna l  energy. 

Since cv = c ~ , ~  + and cv = R / ( r  - l), 

, 

Equations (44) ( 47), ( 48) , and ( 49) give 

1 
4 k = - (9y - 5) vcv ( 50) 
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which i s  EUcken's formula and has been found t o  give r e su l t s  f o r  most 

gases that are  i n  good agreement with experiment [6](p. 180). 

t ion  of equatfons (44), (47) ,  (48), and (49)  i n  equation (42) gives 

Substitu- 

To - Tw = .k-d. - a y + l P r  

f o r  a wall below the  gas. A s i m i l a r  derivation gives 

Tw - TO = 

+ 

f o r  a w a l l  above the gas. Equations (43), (51), and (52) are the  second- 

oraer equations for  heat t ransfer  i n  a raref ied gas according t o  the  

-present method of analysis. The application of these equations and those 

in  the preceding section t o  several problems w i l l  be given i n  the follow- 

ing sections. 

PLANE COUETTE FLOW AND HEAT TRANSFER 

For plane couette flow with f r i c t iona l  heating neglected, the shear 

s t r e s s  and heat transfer are  independent of the distance from a w a l l .  

equations (22) and (43) become 

Thus 

u* - u, = 7z/p 

and 
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Using velocity and temperature jumps a t  t he  two w a l l s  calculated from 

equations (24), (25), and (51) t o  (54) yields  

ana 

where L i s  the  distance between the  two walls 1 and 2, and F and a 

have t h e  same values f o r  t he  two walls. The re su l t s  i n  t h i s  case are the  

same as those for  the  f i r s t -order  analysis. This is, of course, because 

the  veloci ty  and temperature prof i les  as given by  equation (53) and (54) 

are l inear .  The veloci ty  results are i n  good agreement with experiment 

F U U Y  DEWZOPED FLOW AND HEAT 

TRAmsFER IN PASSAGES 

For ful ly  developed flow i n  a tube, t h e  shear s t r e s s  var ies  l i n e a r l y  

with distance f romthe  centerline, so that equation (22) becomes 

or  

The derivatives i n  equation (25) can be calculated by  se t t i ng  

r2 = z2 + 9 i n  equation (25) and l e t t i n g  y = 0 after different ia t ion.  

Then t h e  veloci ty  of the  gas a t  t h e w a l l  is, with Uw = 0, 
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The ’bulk or mixed mean velocity for flow i n  a tube is 

Uxr dr 
J o  % =  

or, from equation ( 5 7 ) ,  

q) = UO + - -  1 zero 
4 c 1  

(59) 

From equations (58) and (59), 

A plot  of equation (60) fo r  F = 1 is  given i n  fig. 2. The term on 

the l e f t  s ide of equation (60) is  the same as the  r a t i o  of the actual  pres- 

sure drop f o r  the tube t o  t h a t  f o r  continuum flow at the  same velocity, 

i f  t he  pressure drop is small compared to  the  absolute pressure and en- 

t rance e f fec ts  are small. 

*om reference 181 f o r  hydrtigen flow through a copper tube, and those 

These conditi6hs are approximated i n  the  data 

data a re  included in  f ig ,  2 f o r  comparison, 

sentat ive of those f o r  flow through glass tubes 181. 

These data a re  a lso repre- 

It is assumed that 

F = 1 f o r  the data throughout the  en t i re  range of pressures, inasmuch as 

F = 1 

surface should not ’be dependent on whether or not col l is ions occur i n  the  

gas.) 

i n  the  free molecular region. (Processes t h a t  take place a t  the 

Also included I s  the  curve for f i rs t -order  s l i p  flow obtained by 
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neglecting the  last term i n  the  denominator of the right side of equa- 

t ion  (60). The predicted curve for  second-order s l i p  flow appears t o  be 

i n  considerably b e t t e r  agreement with the data than does that f o r  first- 

oraer s l ip ,  although there  is some scatter i n  the  data, When p m / p r 0  

is on the  order of 0.2, fo r  which the anaLysis appLies reasonably w e l l ,  

t h e  difference'between the  first- and second-order equations is  about 

20 percent, 

dicted values begin t o  deviate consldembly from the  data, and a second- 

For values of p m / y r o  greater than thoee shown, the  pre- 
i 

order s l i p  flow analysis evidently is not applicable, 
I 

If flow between p a r a l l e l  plates  is considered rather  than flow 

through a tube, derivatives wlth respect t o  y are absent, and i n  place 

of equation ( 6 0 )  is 

where zo is  the  h a l f  distance between the plates  and 

$-+J0TJxdr 

Consider next t he  fully developed heat t ransfer  i n  a tube with uniform 

wall heat flux, 

reference [g]. 

First-order s l ip  flow for this case has been considered in 

If axial conduction is neglected, the energy equa;tion can 

be writ ten f o r  f'ully developed flow as 



For uniform wall heat flux, aT/ax is independent of r, and with 

the use of equation ( 5 7 ) ,  equation (62) can be integrated t o  give 
c 

The derivatives i n  the  expression f o r  t he  temperature jump at  the  w a l l  

(eq. (52)) can be obtained by subst i tut ing r2 = z2 + 9 
and l e t t i n g  y = 0 af'te2 differentiation. Equation (52) then becomes 

i n  equation (63) 

The bulk o r  mixed mean temperature for  flow i n  a tube is 

With the  use of equations (57) and (631, 

o r  
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Writing a heat balance on a cylindrical  element of fluid of radius 

gives 

ro 

where Q is t h e  heat transfer per unit area, f'romthe wall t o t h e  w, 
Substi tuting equtim (68) i n  (67) and using t h e  definit ion f o r  Nusselt 

nmiber, Nu = 2Qr$.z(Tw - %), and equation (59) f o r  I& gives 

The first t e r m  on the right s i d e  of equation (69) is  obtained from qua- 

%ions (64), (68), and (59) as 

u 1-12- 

-- 9~ (177r - 145) 'Or' (e7 (70) 
1024 r + l  UOW 

=ora 1+4- 

and, from equation (58), 

From equations (71), (70 ) ,  and (69) ,  NussreZt nuniber can be calculated 

as a m c t i o n  of p@/(pro)- 

p lo t ted  against p f l / (pro)  i n  f ig ,  3. Curves are shown for y- = 1.4, 

Pr = 0.7, F = 1, and f o r  a = 1 and 0-5. These values f o r  r and h.andtl  

The r a t i o  NU/NU~, where NU, = 48/11, is 
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nuniber correspond approximately t o  a i r  and m o s t  diatomic gases. Included 

f o r  comparison are curves f o r  first-order s l i p  flow and temperatme jump, 

Second-order effects i n  t h i s  cash are somewhat l e s s  than those i n  f ig*  2; 

however, t he  differences between the  first- and second-order equations are  

s t i l l  on the  order of 15 percent at a value of p e / ( p r 0 )  of 0,2 and an 

a of 1, The differences are  l e s s  f o r  smaller values of a. 

SlTMMARY OF Rl3SUlES 

The effects of second-order normal and tangential derivatives on the 

ve loc i ty  and temperature jumps at a w a l l .  i n  a rarefied gas were considered. 

U s e  was made of effective mean free paths f o r  momentum and energy trans- 

fer t h a t  d i f f e r  f'rom the a c t a -  man free path because of factors such as 

persistence of velocities, dependence of' free p t h  on velocity, etc. 

effective mean f r ee  paths were related t o  viscosi t ies  and &her measurable 

The 

quantities, The me of the wual. Navier-Stokes md e n e m  ef$aations i n  

the  gas w a s  shown t o  be consistent with 'the use of second-order boundary 

conditions since, according t o  the analysis, the second-order terms are  

zero i n  the  in te r ior  of the 

temperature jumps at the  walls are given by equations (22), (24), (22a), 

(~k), (51), ana (52 ) ,  

lower densities than does the  usual first-order analysis, 

(e¶, (22) and (43)), The velocity and 

The resfi ts  agree with experiment at somewhat 
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Fig.  1. - Derivat ion of momentum and energy r e l a t i o n s .  
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Fig. 2.  - Comparison of present analysis of f u l l y  developed second-order s l i p  flow 
i n  tubes with f i rs t -order  analysis and experimental data. 
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F i g .  3. - F u l l y  developed Nusse l t  number r a t i o  f o r  f low in a t u b e  a t  uniform w a l l  
h e a t  f l u x .  F = 1, y = 1.4, Pr = 0.7. 
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